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An approximate method is proposed for calculating the nonstationary
thermoelastic stresses in a plane wall for an arbitrary law of variation
of fluid temperature with time,

The calculation of the thermal stresses in the
structural elements of power plants can often be re-
duced to calculation of the stresses in a plane wall
rigidly fixed along the edges. Usually it is possible to
neglect the dynamic component of the stresses, as-
suming that the stress field is quasi-stationary. In this
case if the temperature field of the element is known,
in order to find the thermoelastic stresses it is pos-
sible to use the results obtained in {1].

The most dangerous thermal stresses usually de-
velop at the surface of the element. Therefore in what
follows, in speaking of the stresses, we will have in
mind the tangential component of the stresses at the
surface of a wall washed by a fluid.

In {2] Bagdasarov derived formulas for calculating
the thermoelastic stresses in plane structural ele-
ments for different laws of variation of the tempera-
ture of the heat {ransfer agent with time with and
without thermal shielding. Calculations based on [2]
are rather clumsy owing to the needto evaluate four to
six terms of the series.

In engineering practice it is also useful to have an
approximate method of calculating stresses which,
while simple, has sufficient accuracy. Such a method
is proposed below. It is suitable for cases with any
laws of variation of the temperature of the heat trans-
fer agent with time and for plates with and without
thermal shielding.

The solution of the problem is based on the "para-
bolic approximation” [4]. The process of heat transfer
‘o an infinite plane wall of thickness 6 thermally insu-
lated on one side and washed by a fluid on the other
can be described by the following system:
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Using the expression for the average temperature
of the plate
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we can replace this system with the single equation
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k(1) is a function of time which varies within rather
narrow limits for any values of the Bi number. If we
approximate the temperature field of the plate with a
parabola [4] ¢#(x) = t(x = &) + At(x/8)?, then k = 3 and
does not depend on time. Accordingly, we can rewrite
Eq. (1) as follows:

dt -
¢ = 3 Bi/(3 + Bi). (4)

Solving Eg. (3) for the initial condition t{0) = ®(0) =
=t,, we obtain
Fo
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We find the surface temperature of the plate from the
condition
1 dt (6)
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On the basis of [1] the thermoelastic stresses at the
surface of the plate
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We will obtain formulas for certain laws of variation
of the temperature of the heat transfer agent with time.
Exponential law:
Q = {,— AB [l — exp (— PdFo)] ==
= ty— AB[1 —exp (— m 1)l
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After substitution in (7) and integration we obtain
- Pd
6 = ~———% _ [exp(— PdFo) — exp (— ¢ Fo)],

c=0(l—vwABEa,. (8)

After differentiation with respect to Fo and determina-
tion of the maximum, we find

- @ @ \~%/(9—Fd
Omax = —— [ —— . (9)
" 3 ( Pd )
The stress maximum corresponds tothe dimensionless
time
Fo, = (In ¢ — In Pd)/(¢ — Pd).’ (10)

If Pd — « (instantaneous jump in fluid temperature),
then

Gumax = ¢/3 = Bi/(3 + Bi). (11)

The maximum error of this formula lies in the region
Bl = 6—8 and does not exceed 30% (on the high side).
As will be shown below, for other values of Bi and Pd
the error of calculation based on (9) and (11) is much
smaller. In the region Bi < 6 expression (11) coincides
in form with Manson's formula [5] obtained for the
same conditions by approximation of the exact formu-
las, but differs somewhat in relation to the coeffici-
ents. The advantages of formulas (9) and (11) are
their simplicity and the possibility of using them for
any values of the Bi and Pd numbers.

In order to illustrate the satisfactory accuracy of
the solution obtained within the ranges of Bi and Pd of
practical importance, we have calculated the stresses
for three v alues of Bi: 1,4, « and for Pd varying from
0 to 20. The results are presentedin Fig. 1. The same
figure shows the corresponding G, = f(Bi, Pd)
curves calculated from the exact formulas.
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Fig. 1. Maximum value of thermoelastic stresses.

Solid curves from Eq. (9), dashed curves from

exact formulas. The figures on the curves are val-
ues of the Bi number.

As a comparison shows, the accuracy of the calcu-~
lations is quite satisfactory and is greater, the
smaller the Bi number. Even at Bi =4 the exact and
approximate omgx = f(Pd) curves differ only slightly,
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while at Bi = 1 they merge. The maximum error it
Bi = » is about 10%, the stresses found from the ap-
proximate formula being higher than those found from
the exact formula. Therefore the error is on the safe
side.
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Fig. 2. Time corresponding to stress maximum as

a function of Pd number. Solid curves from Eg.
{10), dashed curves from exact formula. The fig-
ures on the curves are values of the Binumber.

The error in determining Fo, is also small. Fig-
ure 2 presents Foy = f(Bi, Pd) curves found from the
exact and approximate formulas for the same values of
Bi. A comparison of the corresponding curves shows
that the accuracy of the calculation is satisfactory.

As may be seen from Eqgs. (1), (3), the parabolic
approximation is based on the laws of the regular
thermal regime except that in the regular regime the
thermal resistance of the cooled or heated body is
constant in time but depends onthe Binumber, whereas,
in accordance with the parabolic approximation, the
thermal resistance is constant in time and does not
depend on Bi.

For boundary conditions of the third kind the varia-
tion of the temperature field of the plate with time is
described in the regular regime by an exponential
whose exponent (—%) is determined from the equation

[6]
ctgp = wBi.

In the parabolic approximation the cooling rate is equal
to (—p). From the condition ¢ = u2 we can obtain the
formula

ko= - ! — . (12)
1/p* — 1/Bi

The coefficient k calculated from this formula varies
monotonically from 3 (at Bi = 0) to 2.47 (at Bi = ).
Above, we set k = 3 for all Bi. Thereforethe improve-
ment in accuracy as Bi decreases is understandable.
It is also explained by the fact that as Bi decreases so
does the effect of the thermal resistance of the plate
on the transient process, while the role of the ther-
mal resistance to heat transfer increases. In this
case the various assumptions regarding the thermal
resistance of the plate have less influence on the ac-
curacy of the calculations. At large values of Bi the
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initial interval of disordered heat transferhasa strong
influence on the entire transient process. This ex~
plains why an attempt to improve the accuracy of the
calculations at large Bi by introducing k = f(Bi) in
accordance with Eq. (12) was unsuccessful. It is ex-
pedient to take k = 3 irrespective of Bi.
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Fig. 3. 7 as a function of ¢ and the Pd number for
Bi = ». The solid line represents the curves for
Pd = 2 and 4 and the curve for & (in the graph all
three curves merge into one). The dashed line rep-
resents the relation for Pd = 100. The relations
for all Pd were calculated from the exactformula.

Linear law:
8 ={,— A8 Fo,

\
= [1 — exp(— @ Fo)}. (13)
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In the quasi-stationaryregime as Fo— « stresses
T = 1/3 develop in the plate, which coincides with the
exact solution.

If the temperature of the heat transfer agent varies
linearly by an amount A® AFo in time AFo, after
which it remains constant, then for Fo = AFo

s :_;— [exp (pA Fo) — 1] exp (— g Fo). (14)

Obviously, the stress maximum occurs at the moment
AFo and is equal to

Oimax -—'t—;—[l — exp (— @A Fo)]. (15)

When the quantity AFo tends to infinity, we arrive at
the previous results. The results of calculations based
on these formulas are in good agreement with Fritz's
nomogram [3].

The parabolic approximation can also be used to
find the thermoelastic stresses in a plate in the pres-
ence of thermal shielding. We will consider a plate of
thickness 6 composed of a structural wall of thickness
R and thermal shielding of the same material washed
by a heat transfer agent with varying temperature. To
be on the safe side, we assume ideal thermal contact
between the structural wall and the thermal shielding.
On the basis of the parabolic approximation the tem~
perature field in the plate is described by the equation

£(x) = £(0) — [£(8) — O] —I;—i— (%)2.
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The average temperature of the structural wall
f,=1(0)—[¢(3)— 6] %aﬁ.
The temperature of the wall surface
tys = t(0)—[¢(8) — B} —%l- g?.
Hence the thermal stresses in the wall

Ea,

l—w

Oyw=

[t(é)—-@]Bi»'—s;—. (16)

But the quantity

Eq Bi ~

L[t —0l—=0¢

l—v[ (6 ] 3
represents the stresses at the surface of a monolithic
plate of thickness 6. The ratio of the stresses in the
structural wall to the stresses in a plate whose thick-
ness is equal to the total thickness of the wall and the
thermal shield

n:o’w/g:sz. amn

Thus, in the parabolic approximation the quantity
n depends only on &. In the exact formulation 5 also
depends on Bi and Pd, but the effect of these criteria
is relatively small and may be neglected.

In order to demonstrate this, we calculated the re-
lations between n and e for Bi = » and three values of
Pd: 2, 4, and 100 from the exact formulas of [2]. The
value Bi = © was selected because, as is clear from
the foregoing, at that value the maximum deviation of
the approximate from the exact results is to be expec~-
ted. The calculations were made for an exponential
law of variation of the temperature of the heat trans-
fer agent with time. The results are presented in Fig.
3. The same figure shows the curve n = . Clearly,
the exact curve 5 = f(e) for Pd = 100 differs some-
what from the &2 curve, passing below the latter; the
exact curves for Pd = 2 and Pd = 4 coincide com~-
pletely with the = el curve. A certain exaggeration
of the result at large values of Pd is on the safe side.

Thus, it has been shown that the approximate meth-
od based on the parabolic approximation is suitable
for engineering calculations of the thermoelastic
stresses in a plane wall with and without thermal
shielding for an arbitrary law of variation of the tem-~
perature of the heat transfer agent with time.

NOTATION

o represents stresses; t is time; x is the coordi-
nate in direction normal to the surface of the plate; t
is the temperature of plate; T is the average tempera-
ture of plate; tg is the surface temperature; ® is the
temperature of fluid; 6 is the thickness of plate; R is
the thickness of structural wall; E is the modulus of
elasticity; v is Poisson's ratio; a1 is the coefficient
of linear expansion; Bi = a6/A; Fo =ar/6%. For an
exponential law of variation of the fluid temperature
with time Pd = mé%/a; & = R/6.
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