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An approximate method is proposed for calculating the nonstationa~y 
thermoelastie stresses in a plane wall for an arbitrary taw of variation 
of fluid temperature with time. 

The ca lcula t ion  of the t he rma l  s t r e s s e s  in the 
s t r u c t u r a l  e l emen t s  of power  plants  can often be r e -  
duced to ca lcu la t ion  of the s t r e s s e s  in a p lane  wall  
r ig id ly  fixed along the edges. Usual ly  it  is poss ib le  to 
neglect  the dynamic  component  of the s t r e s s e s ,  a s -  
suming  that the s t r e s s  field is  q u a s i - s t a t i o n a r y .  In this  
case  if the t e m p e r a t u r e  f ield of the e lement  is  known, 
in o r d e r  to find the t he rmoe l a s t i c  s t r e s s e s  it is pos -  
s ib le  to use  the r e s u l t s  obtained in [1]. 

The mos t  dangerous  t h e r m a l  s t r e s s e s  usua l ly  de-  
velop at the su r face  of the e lement .  The re fo re  in what 
follows, in speaking of the s t r e s s e s ,  we will have in 
mind  the tangent ia l  component  of the s t r e s s e s  at  the 
su r face  of a wall washed by a fluid. 

In [2] Bagdasarov  derived f o r m u l a s  for calcula t ing  
the t he rmoe la s t i c  s t r e s s e s  in plane s t r u c t u r a l  e l e -  
ments  for d i f fe rent  laws of va r i a t ion  of the t e m p e r a -  
t u r e  of the hea t  t r a n s f e r  agent with t ime  with and 
without t h e r m a l  shielding.  Calcula t ions  based  on [2] 
a re  r a t h e r  c lumsy  owing to the need to evaluate  four to 
six t e r m s  of the s e r i e s .  

In eng inee r ing  p r ac t i c e  it is  also useful  to have an 
approx imate  method of ca lcu la t ing  s t r e s s e s  which, 
while s imple ,  has  suff ic ient  accuracy .  Such a method 
is p roposed  below. It is su i tab le  for  cases  with any 
laws of v a r i a t i o n  of the t e m p e r a t u r e  of the heat  t r a n s -  
fe r  agent  with t im e and for  p la tes  with and without 
t h e r m a l  shielding.  

The solut ion of the p r o b l e m  is based  on the " p a r a -  
bol ic  approx imat ion"  [4]. The p r o c e s s  of heat  t r a n s f e r  
to an inf in i te  p lane  wall of th ickness  6 t he rma l l y  i n s u -  
la ted on one side and washed by a f luid on the other  
can be de sc r i bed  by the following sys tem:  

Ot a~t 
0 ~ Ox ~ 

Ot 
x = O, -- 0: 

ax 

x = ~ ,  - - x  ~ = ( ~ ( t - - o ) .  
ax 

Using the expression for the average temperature 
of the plate 

6 

1 ~t(x)dx, 7=-g- 
o 

and in t roduc ing  the notat ion 

Ot 
k (9  = -~x ~=[  8~It (~) - ~, 

we can rep lace  this sys t em with the s ingle  equation 

!_t 8c~ = (e -7) ~,, (1) 
d~ 

where 
l 

a,  = ; (2) 
1/a + ~/k (9 k 

k(T) is a funct ion of t ime  which v a r i e s  within r a the r  
n a r r o w  l i m i t s  for  any va lues  of the Bi number .  If we 
approximate  the t e m p e r a t u r e  f ield of the p la te  with a 
pa rabo la  [4] t(x) = t(x = 6) + At(x/6) 2, then k = 3 and 
does not depend on t ime.  Accordingly,  we can r ewr i t e  
Eq. (1) as follows: 

df 
dFo + q~7= ~O, (3) 

q~ = 3 Bi/(3 + Bi). (4) 

Solving Eq. (3) for  the in i t ia l  condit ion t(0) = | = 
= t 0, we obtain 

Fo 

}-=[t o + ~ (pO exp ((pFo)dFo] exp(-- TFo ) (5) 
0 

We find the sur face  t e m p e r a t u r e  of the plate  f rom the 
condit ion 

1 aT 
t s - - O =  Bi dFo " (6) 

Hence 
2 

q~ t o q~O ~ i  exp ( - -  ~ Fo) 

Fo 

X ~ (O - -  to) exp (~0 Fo) d Fo. 
0 

On the bas i s  of [1] the t h e r m o e l a s t i c  s t r e s s e s  at the 
su r face  of the p la te  

are  = (F-- is). 

The r e f o r e  

[ = (to-- O) 3 + exp ( -- ~ Fo) • 

Fo 

x S (O--to)exp(~Fo)dFo] ~E l . - %  (7) 
o 

We will obtain fo rmu la s  for ce r t a in  laws of va r i a t i on  
of the t e m p e r a t u r e  of the heat  t r a n s f e r  agent with t ime.  

E x p o n e n t i a l  l a w  : 

O = to-- A@ [1 - -  exp (--  PdFo)l = 

= t o -  AO [1 - -  exp (--  m ,)]. 
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After substitution in (7) and integration we obtain 

Pd q~ [exp (~- PdFo) -- exp (-- ~ Fo)l, 
3 ((p -- Pd) 

a-=  a (1 - -  v)/AO E a~. (8) 

Af te r  d i f f e ren t i a t ion  with r e s p e c t  to Fo and d e t e r m i n a -  
tion of the max imum,  we find 

O'max 3 [ Pd ] " (9) 

The  s t r e s s  m a x i m u m  c o r r e s p o n d s  to the d i m e n s i o n l e s s  
t i m e  

Fo. = (ln q~ - -  In Pd)/(cp - -  Pd)." (10) 

If P d -  ~ ( ins tantaneous  jump in fluid t em pe ra tu r e ) ,  
then 

~max = ~/3 = Bi/(3 + Bi). (11) 

The  m a x i m u m  e r r o r  of this f o r m u l a  l i e s  in the r eg ion  

Bi = 6 - 8  and does  not exceed  30% (on the high side).  
As wil l  be simwn below, fo r  o ther  va lues  of Bi and Pd 
the e r r o r  of ca lcu la t ion  based  on (9) and (11) is much 
s m a l l e r .  In the r eg ion  Bi < 6 e x p r e s s i o n  (11) co inc ides  
in f o r m  with Manson ' s  f o r m u l a  [5] obtained fo r  the 
s a m e  condi t ions  by app rox ima t ion  of the exac t  f o r m u -  
las ,  but d i f f e r s  somewha t  in r e l a t i o n  to the e o e f f i c i -  
ents.  The advantages  of f o r m u l a s  (9) and (11) a r e  
t h e i r  s i m p l i c i t y  and the p o s s i b i l i t y  of us ing  them for  

any va lues  of  the Bi and Pd n u m b e r s .  
In o r d e r  to i l l u s t r a t e  the s a t i s f a c t o r y  a c c u r a c y  of 

the solut ion obtained within the r anges  of Bi and Pd of 
p r a c t i c a l  impor t ance ,  we have  ca lcu la t ed  the s t r e s s e s  

fo r  t h r ee  v a l u e s  of Bi : 1,4, ,~ and for  Pd va ry ing  f r o m  
0 to 20. The r e s u l t s  a r e  p r e s e n t e d  in Fig.  1. The s a m e  

f igure  shows the c o r r e s p o n d i n g  ~max = f ( B i ,  Pd) 
c u r v e s  ca lcu la ted  f r o m  the exac t  f o r m u l a s .  

a/ 

___i___d_ I 
0 2 4 6 8 t0 f2 /4 /5 Pd 

Fig.  1. Max imum va lue  of t h e r m o e l a s t i e  s t r e s s e s .  

Solid c u r v e s  f r o m  Eq. (9), dashed c u r v e s  f r o m  
exac t  f o r m u l a s .  The f i g u r e s  on the c u r v e s  a r e  va l -  

ues  of the Bi n u m b e r .  

As a c o m p a r i s o n  shows, the a c c u r a c y  of the c a l e u -  
la t ions  i s  quite s a t i s f a c t o r y  and is g r e a t e r ,  the 
s m a l l e r  the Bi number .  Even at Bi = 4 the exac t  and 
a p p r o x i m a t e  Crmax = f ( P d )  c u r v e s  d i f f e r  only s l ight ly,  

while at Bi = 1 they merge .  The m a x i m u m  e r r o r  at 
Bi = ~ is about 10%, the s t r e s s e s  found f r o m  the ap-  
p r o x i m a t e  fo rmula  being h igher  than those found f rom 

T h e r e f o r e  the e r r o r  is on the safe the exact  formula .  
side.  
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Fig. 2. Time correspondingto stress maximum as 

a function of Pd number. Solid curves from Eq. 

(i0), dashed curves from exact formula, The fig- 

ures on the curves are values of the Bi number. 

The error in determining Fo, is also small. Fig- 

ure 2 presents Fo, = f(Bi, Pd) curves found from the 

exact and approximate formulas for the same values of 
Bi. A comparison of the corresponding curves shows 

that the accuracy of the calculation is satisfactory. 
As may be seen from Eqs. (i), (3), the parabolic 

approximation is based on the laws of the regular 

thermal regime except that in the regular regime the 

thermal resistance of the cooled or heated body is 
constant in time but depends onthe lBinumber, whereas, 

in accordance with the parabolic approximation, the 
thermal resistance is constant in time and does not 

depend on Bi. 
For boundary conditions of the third kind the varia- 

tion of the temperature field of the plate with time is 

described in the regular regime by an exponential 

whose exponent (-;u 2) is determined from the equation 

[6] 

ctg p = p/Bi. 

In the p a r a b o l i c  approx ima t ion  the cool ing  r a t e  is equal  
to (-~o). F r o m  the condit ion ~o = p~ we can obtain the 

formula 

1 
k -= (12) 

1/~ 2 -  l/Bi" 

The coefficient k calculated from this formula varies 

monotonically from 3 (at Bi = 0) to 2.47 (at Bi = ~). 

Above, we set k = 3 for all Bi. Therefore the improve- 

ment in accuracy as Bi decreases is understandable. 

It is also explained by the fact that as Bi decreases so 

does the effect of the thermal resistance of the plate 

on the transient process, while the role of the ther- 

mal resistance to heat transfer increases. In this 
case the various assumptions regarding the thermal 

resistance of the plate have less influence on the ac- 
curacy of the calculations. At large values of Bi the 
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ini t ia l  in te rva l  of d i so rde red  heat  t r a n s f e r h a s  a s t rong 
inf luence on the en t i r e  t r a n s i e n t  p rocess .  This  ex-  
p la ins  why an a t tempt  to improve  the accu racy  of the 
ca lcula t ions  at l a rge  Bi by in t roducing k = f (Bi )  in 
accordance  with Eq. (12) was unsuccessfuI .  It is ex-  
pedient  to take k = 3 i r r e s p e c t i v e  of Bi. 

q 

~ 7 5  

0.50 - - -  

825 

/ 

. j .  J 

Fig. 3. ~ as a function of e and the Pd n u m b e r  for 
Bi = ~. The solid l ine r e p r e s e n t s  the curves  for 
Pd = 2 and 4 and the curve for e 2 (in the graph all  
th ree  cu rves  m e r g e  into one). The dashed l ine r ep -  
r e s e n t s  the r e l a t ion  for  Pd = 100. The r e l a t ions  
for all  Pd were  calcula ted f rom the e x a c t f o r m n l a .  

L i n e a r  l a w :  
\ 

0 ---- t0--  A0 Fo, 
\' 

~ _ a ( 1 - - v ) = [ l _ e x p ( . _ ~ p F o ) ] .  1_~ (13) 
AOcqE 3 

In the q u a s i - s t a t i o n a r y r e g i m e  as F o - -  ~o s t r e s s e s  
= 1/3 develop in the plate,  which coincides  with the 

exact  solut ion.  
If the t e m p e r a t u r e  of the heat  t r a n s f e r  agent va r i e s  

l i n e a r l y  by an amount  A| a F o  in t ime  AFo, af ter  
which it r e m a i n s  constant ,  then for  Fo -> AFo 

= 1---- [exp (q0A Fo) - -  11 exp (--  q~ Fo). (14) 
3 

Obviously, the s t r e s s  m a x i m u m  occurs  at the m o m e n t  
AFo and is equal  to 

- 1 
[1 - -  exp(--cpA Fo)l. (15) 

When the quant i ty  AFo tends  to infinity,  we a r r i v e  at 
the p rev ious  r e su l t s .  The r e s u l t s  of ca lcu la t ions  based  
on these  fo rmu la s  a re  in good a g r e e m e n t  with F r i t z ' s  

n o m o g r a m  [3]. 
The pa rabo l i c  approx imat ion  can a lso  be used  to 

find the t h e r m o e l a s t i e  s t r e s s e s  in a plate  in the p r e s -  
ence of t h e r m a l  shielding.  We will cons ide r  a p la te  of 
th ickness  6 composed of a s t r u c t u r a l  wall  of th ickness  
R and t h e r m a l  shie ld ing of the s ame  m a t e r i a l  washed 
by a heat  t r a n s f e r  agent with v a r y i n g  t e m p e r a t u r e .  To 
be on the safe  side, we a s s u m e  ideal  t h e r m a l  contact  
between the s t r u c t u r a l  wall and the t h e r m a l  shielding.  
On the ba s i s  of the pa raboI ie  approx imat ion  the t e m -  
p e r a t u r e  f ield in the p la te  is d e s c r i b e d  by the equat ion 

~ . B i / x  \ 2 
= t ( o ) -  it( ) - I T /  

The average  t e m p e r a t u r e  of the s t r u c t u r a l  wall 

yw.~.t(o)_[t(a)_Ol Bi ~2 
6 

The t e m p e r a t u r e  of the wall sur face  

tws = t ( 0 )  - -  I t  ( 5 ~  - -  Ol B i  ~. 
2 

Hence the t he rma l  s t r e s s e s  in the wall 

- -  E ~T 82  
aw= �9 I t ( f ) -  O] B i - - .  (16) 

1 - - v  3 

But the quanti ty 

Ea, [t(5)--O] B i = ~  
1 - - ~  3 

r e p r e s e n t s  the s t r e s s e s  at the su r face  of a monol i th ic  
pla te  of th ickness  6. The ra t io  of the s t r e s s e s  in the 
s t r u c t u r a l  wall to the s t r e s s e s  in a pla te  whose thick-  
ne s s  is equal to the total  th ickness  of the wall and the 
t he r ma l  shield 

~l = ~wla =~2. (17) 

Thus,  in the parabol ic  approx imat ion  the quant i ty  
depends only on e. In the exact fo rmula t ion  V also 

depends on Bi and Pd, but  the effect of these  c r i t e r i a  
is r e l a t ive ly  sma l l  and may be neglected.  

In o r de r  to demons t r a t e  this, we ca lcula ted  the r e -  
la t ions  between ~? and e for Bi = ~o and three  va lues  of 
Pd: 2, 4, and 100 f rom the exact  fo rmulas  of [2]. The 
value Bi = ~ was se lec ted  because ,  as is c l e a r  f r o m  
the foregoing, at that value the m a x i m u m  deviat ion of 
the approximate  f rom the exact  r e s u l t s  is to be expec-  
ted. The ca lcula t ions  were  made for an exponent ia l  
law of va r i a t ion  of the t e m p e r a t u r e  of the heat  t r a n s -  
fe r  agent with t ime.  The r e su l t s  a re  p r e s e n t e d  in Fig.  
3. The same  f igure  shows the curve  ~ = J .  Clear ly ,  
the exact curve  ~ = 9~(s) for Pd = 100 di f fers  s o m e -  
what f rom the e curve,  pas s ing  below the la t te r ;  the 
exact curves  for  Pd = 2 and Pd = 4 coincide c o m -  
ple te ly  with the ~ = e 2 curve.  A ce r t a in  exaggera t ion  
of the r e s u l t  at l a rge  va lues  of Pd is on the safe side. 

Thus, it has been  shown that the approximate  me th -  
od based  on the pa rabo l i c  approx imat ion  is  su i tab le  
for eng ineer ing  ca lcu la t ions  of the t h e r m o e l a s t i c  
s t r e s s e s  in a p lane  wall with and without t h e r m a l  
shie lding for  an a r b i t r a r y  law of va r i a t i on  of the t e m -  
p e r a t u r e  of the heat  t r a n s f e r  agent  with t ime.  

NOTATION 

a r e p r e s e n t s  s t r e s s e s ;  ~- is t ime;  x is the coord i -  
na te  in d i rec t ion  n o r m a l  to the sur face  of the plate;  t 
i s  the t e m p e r a t u r e  of plate;  T is the average  t e m p e r a -  
t u r e  of plate;  t s is the su r face  t e m p e r a t u r e ;  | is the 
t e m p e r a t u r e  of fluid; 6 is the th ickness  of plate;  R is 
the th ickness  of s t r u c t u r a l  wall; E is the modulus  of 
e las t i c i ty ;  v is P o i s s o n ' s  ra t io ;  c~ T is the coeff ic ient  
of l i n e a r  expansion;  Bi = c~6/X; Fo = a-r~62. F o r  an 
exponent ia l  law of va r i a t i on  of the f luid t e m p e r a t u r e  
wi~h t ime  Pd = m52/a;  ~ = R/6 .  
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